

Traffic Engineering

14 Highfields Circuit, Port Macquarie – Proposed Medical Centre

About TTM

For 30 years, we've been at the centre of the Australian development and infrastructure industry. Our unique combination of acoustics, data, traffic and waste services is fundamental to the success of any architectural or development project.

We have over 50 staff, with an unrivalled depth of experience. Our industry knowledge, technical expertise and commercial insight allow us to deliver an exceptional and reliable service.

- T: (02) 9418 3033
- E: ttmnsw@ttmgroup.com.au

Revision Record

No.	Author	Reviewed/Approved	Description	Date
1.	J. Benzie		Draft DA Report	07.11.2017
2.	J. Benzie		For Submission	20.11.2017
3.				
4.				
5.				

Contents

1	Introduc	tion	5
	1.1	Background	5
	1.2	Scope	5
	1.3	Site Location	5
	1.4	Development Profile	7
	1.5	Access	7
	1.6	Parking	8
2	Existing	Transport Infrastructure	9
	2.1	The Road Network	9
	2.2	Road Planning	9
	2.3	Public Transport and Pedestrian Facilities	9
3	Car Park	ing Arrangements1	10
	3.1	Council Parking Supply Requirement	10
	3.2	Estimated Practical Parking Demands	11
	3.3	Car Park Layout1	11
4	Existing	Traffic Volumes	12
4	Existing 4.1	Traffic Volumes1 Peak Hour	12 12
4 5	Existing 4.1 Estimate	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1	12 12 13
4 5	Existing 4.1 Estimate 5.1	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1	12 12 13 13
4	Existing 4.1 Estimate 5.1 5.2	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1	 12 13 13
4	Existing 4.1 Estimate 5.1 5.2	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic	12 12 13 13 13
4	Existing 4.1 Estimate 5.1 5.2	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume	 12 13 13 13 13
4	Existing 4.1 5.1 5.2 5.3	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume 1 1 Estimated Development Traffic Distribution 1	 12 13 13 13 13 14
4	Existing 4.1 5.1 5.2 5.3 5.4	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1	 12 13 13 13 13 14 15
4	Existing 4.1 5.1 5.2 5.3 5.4 5.5	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume 1 1 Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1 Opening Day (2019) Project Traffic Demands 1	 12 13 13 13 14 15 15
4	Existing 4.1 5.1 5.2 5.3 5.4 5.5 5.6	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume 1 1 Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1 Opening Day (2019) Project Traffic Demands 1 Future (2029) Base Traffic Demands 1	 12 13 13 13 14 15 16
4	Existing 4.1 Estimate 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic Volume 1 5.2.2 Proposed Development Traffic Volume 1 Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1 Opening Day (2019) Project Traffic Demands 1 Future (2029) Project Traffic Demands 1 Future (2029) Project Traffic Demands 1	 12 13 13 13 13 14 15 16 16
4 5	Existing 4.1 Estimate 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Road Ne	Traffic Volumes 1 Peak Hour 1 ed Future Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 5.2.2 Proposed Development Traffic Volume 1 Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1 Opening Day (2019) Project Traffic Demands 1 Future (2029) Base Traffic Demands 1 Future (2029) Project Traffic Demands 1 future (2029) Proj	 12 13 13 13 13 14 15 16 16 17
4 5 6	Existing 4.1 Estimate 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Road Ne	Traffic Volumes 1 Peak Hour 1 Peak Hour 1 Peak Poure Transport Demands 1 Development Scenarios 1 Estimated Development Traffic Generation 1 5.2.1 Existing Development Traffic 1 5.2.2 Proposed Development Traffic Volume 1 Estimated Development Traffic Distribution 1 Opening Day (2019) Base Traffic Demands 1 Opening Day (2019) Project Traffic Demands 1 Future (2029) Base Traffic Demands 1 Future (2029) Project Traffic Demands 1 Analysis of Wright Road / Oxley Highway Intersection 1	 12 13 13 13 14 15 16 16 17 17

ttm

	6.3	Analysis Conclusions	18
7	Site Acce	ess Arrangements	19
8	Service \	/ehicle Arrangements	20
	8.1	Council Requirements	20
	8.2	Proposed Service Vehicle Provisions	20
		8.2.1 Regular Access – Ambulance	20
		8.2.2 Occasional Access – Refuse Collection	21
		8.2.3 Occasional Access – Deliveries	21
9	Active Tr	ansport	22
	9.1	Public Transport and Pedestrian Access	22
10	Summar	y and Conclusions	23
	10.1	Development Access	23
	10.2	Car Parking Arrangements	23
	10.3	Impact on Surrounding Road Network	23
	10.4	Service Vehicle Arrangements	23
	10.5	Active Transport Facilities	23
	10.6	Conclusion	23
Арр	endix A	Proposed Site Plan	24
Арр	endix B	Vehicle Swept Paths	25
Арр	endix C	SIDRA Outputs	26

Table Index

Table 1.1: Proposed Land Uses	7
Table 2.1: Local Road Hierarchy	9
Table 3.1: Parking Supply Requirement	10
Table 3.2: Parking Design Requirements	11
Table 6.1: Summary of Sidra Outputs (Wrights Road / John Oxley Highway Intersection Intersection)	18
Table 7.1: Typical Driveway Requirements for the Highfields Circuit Access	19

Figure Index

-igure 1.1: Site Location	6
Figure 1.2: Site Area	7
-igure 4.1: Surveyed Peak Hour Traffic Volumes 2017	12
Figure 5.1: Expected Local Traffic Movements	14
-igure 5.2: Estimated 2019 Peak Hour Traffic, Without Development (2%pa growth)	15
-igure 5.3: Estimated 2019 Peak Hour Traffic, With Development	15
igure 5.4: Estimated 2029 Peak Hour Traffic, Without Development (2%pa growth)	16
-igure 5.5: Estimated 2029 Peak Hour Traffic, With Development	16
-igure 6.1: Existing Wrights Road / John Oxley Highway Intersection Layout	17

1 Introduction

1.1 Background

TTM Consulting has been engaged to prepare a traffic engineering report investigating a proposed medical centre at 14 Highfields Circuit, Port Macquarie. It is understood that a Development Application will be lodged with Port Macquarie Hastings Council (PMHC).

1.2 Scope

This report investigates the transport aspects associated with the proposed development. The scope of the transport aspects investigated includes:

- Parking supply required to cater for development demand
- Parking layout to provide efficient and safe internal manoeuvring
- Identification of likely traffic volumes and traffic distribution from the future development
- Identification of likely traffic impact of development on the public road network
- Access configuration to provide efficient and safe manoeuvring between the site and the public road network
- Suitability of access and internal facilities to provide for pedestrian and cyclist operation
- Access to suitable level of public transport

To assess the proposed transport arrangements, the development plans have been assessed against the following guidelines and planning documents:

- Port Macquarie-Hastings Development Control Plan 2013, specifically:
 - Part 2.5 Transport, Traffic Management, Access and Car Parking
- Australian Standard AS2890 series

1.3 Site Location

The site is located at 14 Highfields Circuit, Port Macquarie, as shown in Figure 1.1. The property description is Lot 15 on DP262236. The site has road frontages to Highfields Circuit only, and the site is currently occupied by a single dwelling.

Figure 1.1: Site Location

Figure 1.2: Site Area

1.4 Development Profile

The proposed land use for this development is summarised in Table 1.1.

Table 1.1: Proposed Land Uses

Use	Area
Medical Centre	1,085m ²
 Radiology and imagery practice 	

1.5 Access

The development plan includes the following access arrangements:

- Highfields Circuit access located at the northern side of the subject site. The characteristics of this access include:
 - 6.5m wide, combined drive way access
 - Priority control with all turns permitted, however movements generally be limited to right in / left out due to road geometry

1.6 Parking

The development proposal includes the following parking supply:

- 53 general spaces (including three PWD spaces), which are located on-grade across the site.
- 1 ambulance bay, located at the north-west corner of the site.

2 Existing Transport Infrastructure

2.1 The Road Network

The majority of roads in the immediate vicinity of the site are administered by Council, the exception being the Oxley Highway. The hierarchy and characteristics of roads in the immediate vicinity of the site are shown below in Table 2.1.

Table 2.1: Local Road Hierarchy

Road	Speed Limit	Lanes	Classification	Road Authority
Oxley Highway	100kph	4 (divided)	State Road	RMS
Highfields Circuit	50kph	2 (undivided)	Local Road	РМНС
Wrights Road	50kph	2 – 4 (divided)	Local Road	РМНС

Highfields Circuit has a 7.5m wide carriageway at the site frontage. The intersection of Wrights Road and Oxley Highway is roundabout controlled.

2.2 Road Planning

The pre-lodgement minutes issued by Council identify that a concrete footpath will be required along the public road for the full frontage of the development site. The construction of the footpath is to comply with Council's standard drawing ASD-100.

No further works have been identified.

2.3 Public Transport and Pedestrian Facilities

Buses

Bus routes 325, 328, 335 and 335W operate between Port Macquarie and the Base Hospital (Wrights Road).

The 325 runs between 7:00am and 11pm, with services running hourly. The 328 runs every two to three hours between 9am and 4pm. The 335 and 335W run hourly between 7am and 5pm.

Pedestrians

Formal pedestrian footpaths are located on the southern side of Highfields Circuit. There are no formal pedestrian crossings provided within the immediate vicinity of the site.

3 Car Parking Arrangements

3.1 Council Parking Supply Requirement

Table 3.1 below identifies the required car parking provisions. The parking standards are based on rates set out in the Port Macquarie Hastings Development Control Plan (DCP).

It is understood that the staffing requirements for the development are as follows:

- 1.5 doctors (FTE)
- 12 technical staff (FTE)
- 7 admin (FTE)

The DCP provides does not define those employees who are classed as consultants vs those who are employees. Whilst a standard medical centre would have a clear definition between consultant (doctor) and employee (administration), the proposed use requires that technical staff who will primarily responsible for the operation of imaging machinery may may also briefly consult with patients.

TTM contacted Council to better understand the definition of a consultant and employee and how this would be applied to the proposed scheme. TTM were advised that:

- The consultant is someone who directly consults with patients
- If a technician does not consult the patient, but simply operates the equipment then they could be considered a staff member for the purpose of traffic calculations.

Despite this advice from Council, the parking assessment has been based upon the conservative assumption that all technical staff and doctors be classed as consultants and all admin be classed as employees.

Table 3.1: Parking Supply Requirement

Land-Use	No./GFA	Rate	Standard	Provision
Health Services Facilities – Medical Centers	13.5 consultants 7 employees	3 spaces per consultant 1 space per two employees	40 spaces 4 spaces	53 spaces
Total			44 spaces	53 spaces

The above parking supply is to include PWD parking in communal parking areas. The general BCA requirement for a Class 9a (d) development is a minimum of 1 space per 50 spaces. Based upon a total of 53 spaces being provide, two PWD parking spaces are required. The development is to provide three PWD spaces, therefore satisfying BCA requirements.

3.2 Estimated Practical Parking Demands

As shown on the plans included in Appendix A, a total of 53 parking spaces is to be provided across the site. In terms of car parking allocation, it is intended that four spaces will be assigned to employees, whilst the remaining 49 spaces will be allocated as visitor spaces.

Overall, the proposed parking provisions exceed the minimum Council requirements and are considered suitable for the development site.

3.3 Car Park Layout

Table 3.2 identifies the characteristics of the proposed parking area with respect to the Council requirements. The last column identifies the compliance of each design aspect. Where compliance with Council is not achieved, further information is provided below

Design Aspect	Minimum AS2890.1/6 Standard	Proposed Provision	Compliance
Parking space length:			
 Standard bay 	5.4m	5.4m	Compliant
 Parallel bay* 	7.8m	7.8m	Compliant
Parking space width:			
– Staff	2.4m	2.6m	Compliant
– Visitor	2.6m	2.6m	Compliant
 Parallel bay[*] 	3.2m	3.2m	Compliant
– PWD bay	2.4m + 2.4m loading bay	2.4m + 2.4m loading bay	Compliant
Aisle Width:			
 Parking aisle 	5.8m	5.8m (min)	Compliant
 Access to parallel 	3.6m	5.8m	Compliant
bays			
Maximum Gradient:			
 PWD parking 	1:40 (2.5%)	Flat	Compliant
 Parking aisle 	1:16 (6.25%)	Flat	Compliant
Parking Aisle Extension	1m beyond last bay	1m beyond last bay	Compliant

Table 3.2: Parking Design Requirements

* Parallel bays are to allocated as PWD spaces and have been designed in accordance with Figure 2.4 of AS2890.6.

The proposed carpark layout complies with all Council requirements, and therefore no further assessment is required.

4 Existing Traffic Volumes

4.1 Peak Hour

TTM Data conducted an intersection movement survey at the Wright Road / John Oxley Highway roundabout, from 7:30 to 9:30am and 3:30 to 5:30pm on Thursday 26th October, 2017. The peak hours were found to be 7:15 to 8:15am and 3:30 to 4:30pm. The results of the survey are shown below in Figure 4.1.

The survey results indicate that the AM / PM peak hour traffic volumes on Wrights Road leading to the subject site are in the order of 400vph / 200vph.

2017 S	urvey	Data									
		1377	1124								
		3	23	-	1	812	669	118			
		72	134		0	759	595	254			
		0	0				\downarrow				
		1			<	0	0				
	36	817	133	21	^_	91	242		Wri	ghts Rd	
	42	636	76	20	-	21	104				
					 ✓ 	34	62				
				John Oxley Dr							

5 Estimated Future Transport Demands

5.1 Development Scenarios

For the purpose of assessing the future traffic demands TTM has adopted an annual growth rate of 2%. This is based upon the expected development of the area, and the limited opportunity for significant growth.

TTM has identified three assessment periods for the road network as follows:

Current Traffic Scenario

This scenario includes the 2017 traffic volumes modelled over the existing road network. This analysis has been performed for both the AM and PM Peaks.

Opening Year (2019) Traffic Scenario

This analysis incorporates a 2% per annum increase in the background traffic volume for a period of two years from the most recent survey. For the base and development case scenario, the existing road network has been analysed.

Future Year (2029) Traffic Scenario

This analysis incorporates a 2% per annum increase in the background traffic volume for a period of 12 years (i.e. 10 years past opening year).

5.2 Estimated Development Traffic Generation

5.2.1 Existing Development Traffic

The current use on the site generates 10 vehicles per day and 1 vehicle per hour in the peaks. Once the existing use is removed these trips will no longer occur and have therefore been deducted from future development generation.

5.2.2 Proposed Development Traffic Volume

Peak traffic generation rates have been based on recommended specific generation rates for different development types provided in the RTA's 'Guide to Traffic Generating Developments' generation rate for a medical centre. As per Section 3.6.1 of the guidelines, the expected generation rate for a medical centre can be taken from the model for a shopping centre. This model is broken down into five specific components – slow trade, faster trade, super market, specialty shops and office / medical, and gives a peak hour generation rate (vehicle trips per 1000m²) for each component. The individual components are then added together for the final generation rate of the shopping centre. In this instance, only the office/ medical portion of the model is applicable, and has been used as the basis for the peak hour generation of the proposed development. Given that the model is based upon survey data, the methodology for assessing the generation is considered suitable.

Weekday Evening Peak

Peak hour traffic generation for a medical centre = 22 vph / 1000m² GFA = 24vph (in+out)

5.3 Estimated Development Traffic Distribution

The distribution of development generation traffic is based on the following:

- Medical Centre
 - 70% of development traffic is inbound in the AM Peak, with the remaining 30% outbound
 - 30% of development traffic is inbound in the PM Peak, with the remaining 70% outbound

The remaining traffic movements are based on corresponding movements in the survey data.

The expected traffic distribution will result in local traffic movements generated by the proposed development as shown in Figure 5.1.

Figure 5.1: Expected Local Traffic Movements

5.4 Opening Day (2019) Base Traffic Demands

Figure 5.2 shows the opening day (2019) base traffic demands, based on an application of an annual growth rate of 1.5% for a period of 2 years to the 2017 traffic survey volumes.

2019 E	ase Vo	lumes																	
		1433	1169	♪															
		3	24	-	1.04	844.8	696	122.8											
		75	139		0	789.7	619	264.3					-						
		0	0				+						$\overline{}$						
		1			_	0	0												
	37	850	138	22	€	95	252		Wri	ghts Ro	1								
	44	661.7	79	21	-	22	108												
					<	35	65											Highfi	elds
			ſ	<u>د</u>												\rightarrow		Circu	uit
				ey D															
				0XI															
				lohn															
																Si	te		
																-			

Figure 5.2: Estimated 2019 Peak Hour Traffic, Without Development (2%pa growth)

5.5 Opening Day (2019) Project Traffic Demands

The opening day project case scenario is obtained by the addition of development traffic generation shown in Figure 5.1 to the base traffic volumes shown in Figure 5.2. These expected traffic movements are shown in Figure 5.3.

Figure 5.3: Estimated 2019 Peak Hour Traffic, With Development

5.6 Future (2029) Base Traffic Demands

Figure 5.4 shows the future (2029) base traffic demands, based on an application of an annual growth rate of 1.5% for a period of 12 years to the 2017 traffic volumes.

2029 B	ase Vo	lumes																	
		1746	1426	♪															
		4	29	-	1	1030	848.5	149.7											
		91	170		0	962.6	754.6	322.1					-						
		0	0			\checkmark	+												
		1			_	0	0												
	46	1036	169	27	€	115	307		Wri	ghts Ro	1								
	53	806.6	96	25	-	27	132												
					√	43	79											Highfi	elds
			ĺ	۲.												\rightarrow		Circu	lit
				eyD															
				Ň															
				nhol															
																Si	te		

Figure 5.4: Estimated 2029 Peak Hour Traffic, Without Development (2%pa growth)

5.7 Future (2029) Project Traffic Demands

The future project case scenario is obtained by the addition of development traffic generation shown in Figure 5.1 to the base traffic volumes shown in Figure 5.4. These expected traffic movements are shown in Figure 5.5.

Figure 5.5: Estimated 2029 Peak Hour Traffic, With Development

6 Road Network Performance

6.1 Analysis of Wright Road / Oxley Highway Intersection

TTM has assessed the performance of these intersections utilising SIDRA analysis software (Version 6.1). For the intersection TTM has assessed all of the development scenarios up to 2019.

The SIDRA layout identified for this intersection is shown in Table 6.1 6.1. This layout is generally based on the existing intersection configuration. Note that due to the complexity of the intersection, the SIDRA layout will vary slightly for the western approach. This is due to the limits of SIDRA and the inability to input a terminating lane mid intersection.

Figure 6.1: Existing Wrights Road / John Oxley Highway Intersection Layout

6.2 Analysis Results

Table 6.1 gives a summary of the outputs for the various traffic cases applied to the intersection. The detailed outputs for this analysis are provided in Appendix C.

Case	Degree of	Average	Level of	95th P	ercentile C	ritical Queu	ıe (m)
	Saturation	Delay	Service	South	East	North	West
AM Current Case 2017	71.2%	7.3	А	61.4	4.4	23.8	20.7
AM Base Case 2019	77.2%	8.0	А	76.7	4.9	25.8	23.8
AM Project Case 2019	78.2%	8.2	А	79.8	5.2	26.1	24.3
AM Base Case 2029	120.8%	43.5	D	794.7	9.2	37.6	37.3
AM Project Case 2029	122%	45.5	D	828.5	9.8	37.9	37.4
PM Current Case 2017	59.5%	7.1	А	40.8	11.3	23.9	34.7
PM Base Case 2019	64.8%	7.6	А	49.5	12.6	25.8	40.9
PM Project Case 2019	65.8%	7.8	А	51.2	13.3	26.0	42.1
PM Base Case 2029	106.6%	25.0	С	387.3	28.1	36.9	105
PM Project Case 2029	108.7	27.1	С	427.5	30.0	37.0	105.5

 Table 6.1: Summary of Sidra Outputs (Wrights Road / John Oxley Highway Intersection Intersection)

6.3 Analysis Conclusions

Table 6.1 identifies that the existing roundabout has insufficient capacity to cater for future (2029) traffic increases, both with and without development traffic. This intersection will 'fail' prior to 2029 with excessive delays and queues on Oxley Highway (south) without development traffic.

Given the intersection is above capacity during both the base and project cases, TTM have undertaken an indicative assessment of a signalised intersection at this location. Note that given the intersection is above capacity during the base case, works to upgrade this intersection are associated with general growth in the local traffic catchment, and not specifically this development. As such, the future configuration of this intersection should be considered as part Councils future road planning, rather than attributed to a single site.

7 Site Access Arrangements

The development is to be accessed via Highfields Circuit. The access driveway requirements are specified in Table 7.1.

Design Aspect	AS2890.1 / AS2890.2 Requirement	Proposed Provision	Compliance
Sight Distance - 50kph	Desirable – 69m Minimum - 45m	110m	Compliant
Design Type / Width	Cars: 6m to 9m, combined Service Vehicles: 6m / 9m, combined	6.5m wide, combined	Compliant Further explanation provided
Minimum Queuing Provisions	2 cars (12m)	4m	Performance Solution
Gradient at Site Boundary	1:20 for first 6m	1:20 (max)	Compliant

 Table 7.1: Typical Driveway Requirements for the Highfields Circuit Access

The proposed access arrangements generally complies with Council requirements, however the following items are resolved with performance solutions.

Driveway Width

The development is to provide a 6.5m wide driveway crossover, which satisfies the requirements for cars to access the site. The proposed development is to allow for ambulance access to the site. AS2890.1 does not specify a crossover width for this type of vehicle. The 6m/ 9m requirement detailed in Table 7.1 is based upon AS2890.1 requirements for a SRV and MRV respectively. A typical ambulance is slightly longer than an SRV, and therefore TTM have undertaken a swept path analysis to demonstrate that the proposed crossover width will allow for ambulance access. TTM Drawing 17SYT0138-01, demonstrates ambulance access to/from the site.

Queuing Provisions

The net peak hour traffic flow for this driveway is expected to be in the order of 24 vph. Assuming a directional split of up to 70% inbound traffic (which will occur in the AM peak, when most employees are entering the site) this equates to a peak access inflow of 17vph. The probability of more than 1 vehicle entering the site simultaneously (or say within a 30 second period) and queuing on the access driveway for this flow of traffic is less than 1%. This is based on the 'Poisson Distribution' equation for queuing theory, as outlined in the 'Austroads Guide to Traffic Management Part2: Traffic Theory'.

It is also noted that the first point of conflict within the site is the internal intersection where the one-way aisle connects to the main aisle. At this location, vehicles exiting the one-way section will be required to give way to all traffic entering and travelling along the entrance aisle. As priority is given to vehicles entering the site, this is not expected to result in any additional traffic accessing the site. Therefore, a reduced queueing provision is considered suitable for the development site.

8 Service Vehicle Arrangements

The Council DCP does not specify a service vehicle requirement for a medical centre, and therefore the proposed service vehicle arrangements have been based upon the expected practical demands of the site.

In this instance, TTM consider it suitable that the layout of the site accommodates an Ambulance as the regular access vehicle and a refuse collection vehicle (RCV) as the occasional access vehicle.

8.1 Council Requirements

In terms of loading bay requirements, the DCP identifies the following:

- Off street commercial vehicles facilities are provided in accordance with AS/NZS 2890.2 Parking facilities Off-street commercial vehicle facilities.
- Loading bays will be provided in accordance with the following requirements;
 - Minimum dimensions to be 3.5m wide x 6m long (this may increase according to the size and type of vehicle).
 - Vertical clearance shall be a minimum of 5m.
 - Adequate provision shall be made on-site for the loading, unloading and manoeuvring of delivery vehicles in an area separate from any customer car parking area.
 - Loading areas shall be designed to accommodate appropriate turning paths for the maximum design vehicle using the site.
 - Vehicles are to be capable of manoeuvring in and out of docks without causing conflict with other street or on-site traffic.
 - Vehicles are to stand wholly within the site during such operations.
- The location and design of loading bays should integrate into the overall design of the building and car parking areas.

8.2 Proposed Service Vehicle Provisions

8.2.1 Regular Access – Ambulance

The development is to provide an allocated ambulance bay at the north-west corner of site. The bay is located adjacent to the 'hot waiting' area and therefore allows for expedient and private patient movement.

The proposed ambulance bay is to be 10m long x 3.2m wide with an unrestricted height clearance. The typical dimensions for an ambulance are 6.3m long x 2.7m wide with an overall body height of 2.5m. As such, the proposed loading bay dimensions will accommodate an ambulance.

In terms of on-site manoeuvring, the ambulance will enter the site and continue through the site utilising the one-way aisle. The ambulance will then reverse into the loading bay. Once patient movement is complete, the truck will then exit the site in forward gear. For reference, the ambulance manoeuvre is shown in TTM Drawing 17SYT0138-01.

8.2.2 Occasional Access – Refuse Collection

The bin store area is located at the eastern boundary, adjacent to the site entrance. To service the site, it is intended that an RCV will enter the site in forward gear, load directly adjacent the bins, turnaround and exit the site in forward gear.

As the development is non-residential, waste collection will be undertaken by a private waste contractor and is to occur outside of hours. Due to this, the truck can utilise vacant parking spaces in order to perform the onsite turnaround.

Given the size of the medical centre, it is expected that waste will be collected every two days.

TTM Drawing 17SYT0138-03 demonstrates the on-site manoeuvring for a 9.24m, rear load RCV.

8.2.3 Occasional Access – Deliveries

Deliveries will occur outside of patient consultation hours, and therefore vehicles can stand within the parking aisle for loading and unloading. Given that the demand for deliveries will typically be for the office use, a small rigid vehicle (SRV) is considered suitable.

Similar to the RCV, an SRV will enter the site in forward gear, load/unload within the aisle and then exit the site in forward gear. As deliveries occur outside of consultation hours, the loading within the aisle will have no impact on the functionality of the car park.

TTM Drawing 17SYT0138-02 demonstrates the on-site manoeuvring for an SRV.

9 Active Transport

9.1 Public Transport and Pedestrian Access

Access to public transport from the site is considered suitable due to the presence of multiple bus routes which service the Base Hospital. From the hospital, it is a short walk to the development site.

TTM consider the high-availability of public transportation provisions in the vicinity of the site will satisfy the site's requirements for such facilities.

Pedestrian access to the site is considered to be acceptable with pedestrian access points available along the site frontage. The construction of a pedestrian path within the verge will be conditioned as part of this approval.

10 Summary and Conclusions

10.1 Development Access

The development provides a combined 6.5m wide, crossover onto Highfields Circuit. The design and location of the driveway crossover is generally compliant with AS2890.1 / AS2890.2 standards, however the following aspects are provided with alternate solutions;

- Driveway width; and
- Queuing provisions

Overall, the proposed access arrangements are considered suitable for the development.

10.2 Car Parking Arrangements

As shown on the plans included in Appendix A, a total of 53 parking spaces is to be provided across the site. In terms of car parking allocation, it is intended that four spaces will be assigned to employees, whilst the remaining 49 spaces will be allocated as visitor spaces.

Overall, the proposed parking provisions exceed the minimum Council requirements and are considered suitable for the development site.

10.3 Impact on Surrounding Road Network

Assessment of the proposed development indicates that the development will not have a significant impact on the future road network. Whilst the intersection is shown to 'fail' in the future year, this is due to general traffic growth along the network and can therefore not be attributed to a single development site. On this basis, no further impact assessment is considered necessary.

10.4 Service Vehicle Arrangements

The development provides a 10m long x 3.2m wide dedicated ambulance bay. Refuse vehicles will reverse from Highfields Circuit and stand within the aisle. Overall, the proposed service vehicle arrangements are considered adequate to meet the needs of the proposed development.

10.5 Active Transport Facilities

The current public transport infrastructure and proposed site provisions for pedestrian facilities are considered adequate for the development.

10.6 Conclusion

Based on the assessment contained within this report, TTM see no traffic engineering reason why the relevant approvals should not be granted.

Appendix A Proposed Site Plan

Site: 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA Reference: 17SYT0138

Appendix B Vehicle Swept Paths

Site: 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA Reference: 17SYT0138

Appendix C SIDRA Outputs

Site: 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA Reference: 17SYT0138

₩ Site: 101 [2017 AM Survey]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocution	laba Or	veh/h	%	V/C	sec		veh	m		per veh	km/h				
South:	Jonn Ox	(ely Ra (S)													
1b	L3	38	1.0	0.542	10.6	LOS B	4.3	30.5	0.87	0.99	51.4				
2	T1	860	1.0	0.712	11.3	LOS B	8.7	61.4	0.93	1.08	52.9				
3	R2	140	1.0	0.712	19.0	LOS B	8.7	61.4	0.96	1.14	52.9				
Approa	ach	1038	1.0	0.712	12.3	LOS B	8.7	61.4	0.93	1.08	52.8				
East: V	Nrights F	۲d													
4	L2	36	0.0	0.057	6.4	LOS A	0.4	2.9	0.66	0.72	54.9				
4a	L1	22	0.0	0.057	7.1	LOS A	0.4	2.9	0.66	0.72	56.2				
6	R2	96	0.0	0.114	13.0	LOS B	0.6	4.4	0.77	0.85	52.9				
Approa	ach	154	0.0	0.114	10.6	LOS B	0.6	4.4	0.73	0.80	53.8				
North:	John Ox	ley Highway													
7	L2	267	0.0	0.147	3.3	LOS A	0.9	6.2	0.31	0.40	56.5				
8	T1	626	0.0	0.467	4.0	LOS A	3.4	23.8	0.54	0.41	57.3				
9a	R1	799	0.0	0.467	9.2	LOS A	3.4	23.8	0.50	0.63	54.0				
Approa	ach	1693	0.0	0.467	6.3	LOS A	3.4	23.8	0.48	0.51	55.5				
South\	Nest: Joł	nn Oxley High	way												
30a	L1	1183	0.0	0.390	3.2	LOS A	3.0	20.7	0.33	0.36	58.3				
32a	R1	24	0.0	0.185	10.6	LOS B	1.1	7.9	0.77	0.81	51.5				
32b	R3	141	0.0	0.185	13.3	LOS B	1.1	7.9	0.77	0.81	53.3				
Approa	ach	1348	0.0	0.390	4.4	LOS A	3.0	20.7	0.38	0.41	57.5				
All Veh	nicles	4233	0.2	0.712	7.3	LOS A	8.7	61.4	0.57	0.63	55.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:26 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2017 PM Survey]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocutha	Jahr Or	veh/h	%	V/C	sec		veh	m		per veh	km/h				
South:	John Ox	Kely Ra (S)													
1b	L3	44	1.0	0.453	11.7	LOS B	3.1	21.8	0.85	0.96	50.6				
2	T1	669	1.0	0.595	11.7	LOS B	5.8	40.8	0.90	1.04	52.7				
3	R2	80	1.0	0.595	18.9	LOS B	5.8	40.8	0.92	1.09	53.2				
Approa	ach	794	1.0	0.595	12.4	LOS B	5.8	40.8	0.90	1.04	52.6				
East: \	Nrights F	۲d													
4	L2	65	0.0	0.217	7.7	LOS A	1.4	9.7	0.76	0.83	54.1				
4a	L1	109	0.0	0.217	7.7	LOS A	1.4	9.7	0.76	0.83	55.4				
6	R2	255	0.0	0.288	13.4	LOS B	1.6	11.3	0.79	0.89	52.9				
Approa	ach	429	0.0	0.288	11.1	LOS B	1.6	11.3	0.78	0.87	53.7				
North:	John Ox	ley Highway													
7	L2	124	0.0	0.066	3.1	LOS A	0.4	2.6	0.21	0.36	57.0				
8	T1	704	0.0	0.473	3.4	LOS A	3.4	23.9	0.40	0.34	58.1				
9a	R1	855	0.0	0.473	8.7	LOS A	3.4	23.9	0.36	0.58	54.6				
Approa	ach	1683	0.0	0.473	6.0	LOS A	3.4	23.9	0.37	0.46	56.1				
South\	Nest: Jol	hn Oxley High	way												
30a	L1	1449	0.0	0.552	3.9	LOS A	5.0	34.7	0.41	0.46	57.8				
32a	R1	3	0.0	0.072	10.2	LOS B	0.4	3.0	0.70	0.74	51.6				
32b	R3	76	0.0	0.072	12.8	LOS B	0.4	3.0	0.70	0.74	53.3				
Approa	ach	1528	0.0	0.552	4.4	LOS A	5.0	34.7	0.43	0.47	57.4				
All Veł	nicles	4435	0.2	0.595	7.1	LOS A	5.8	40.8	0.52	0.61	55.6				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:31 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2019 AM Base]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocutha	laha Or	veh/h	%	v/c	sec		veh	m		per veh	km/h				
South:	John Ox	(ely Ra (S)													
1b	L3	39	1.0	0.587	12.0	LOS B	5.0	35.5	0.90	1.04	50.5				
2	T1	895	1.0	0.772	13.7	LOS B	10.9	76.7	0.96	1.16	51.2				
3	R2	145	1.0	0.772	21.9	LOS C	10.9	76.7	1.00	1.25	50.8				
Approa	ach	1079	1.0	0.772	14.7	LOS B	10.9	76.7	0.96	1.17	51.1				
East: \	Nrights R	Rd													
4	L2	37	0.0	0.061	6.8	LOS A	0.5	3.3	0.69	0.74	54.6				
4a	L1	23	0.0	0.061	7.4	LOS A	0.5	3.3	0.69	0.74	56.0				
6	R2	100	0.0	0.124	13.3	LOS B	0.7	4.9	0.79	0.87	52.8				
Approa	ach	160	0.0	0.124	10.9	LOS B	0.7	4.9	0.75	0.82	53.6				
North:	John Ox	ley Highway													
7	L2	278	0.0	0.154	3.3	LOS A	0.9	6.5	0.32	0.40	56.5				
8	T1	652	0.0	0.490	4.1	LOS A	3.7	25.8	0.56	0.42	57.1				
9a	R1	832	0.0	0.490	9.2	LOS A	3.7	25.8	0.52	0.64	53.9				
Approa	ach	1761	0.0	0.490	6.4	LOS A	3.7	25.8	0.51	0.52	55.4				
South\	Nest: Joł	nn Oxley High	way												
30a	L1	1231	0.0	0.426	3.4	LOS A	3.4	23.8	0.34	0.38	58.2				
32a	R1	25	0.0	0.200	10.9	LOS B	1.3	8.8	0.80	0.83	51.4				
32b	R3	146	0.0	0.200	13.5	LOS B	1.3	8.8	0.80	0.83	53.2				
Approa	ach	1402	0.0	0.426	4.6	LOSA	3.4	23.8	0.40	0.44	57.4				
All Ver	nicles	4402	0.2	0.772	8.0	LOS A	10.9	76.7	0.59	0.66	54.8				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:27 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

V Site: 101 [2019 AM Project]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h				
South	John Ox	ely Rd (S)													
1b	L3	39	1.0	0.595	12.3	LOS B	5.2	36.4	0.91	1.05	50.3				
2	T1	895	1.0	0.782	14.1	LOS B	11.3	79.8	0.96	1.18	50.9				
3	R2	153	1.0	0.782	22.5	LOS C	11.3	79.8	1.00	1.27	50.4				
Approa	ach	1086	1.0	0.782	15.2	LOS B	11.3	79.8	0.97	1.19	50.8				
East: \	Nrights R	d													
4	L2	39	0.0	0.064	6.8	LOS A	0.5	3.5	0.69	0.74	54.6				
4a	L1	24	0.0	0.064	7.4	LOS A	0.5	3.5	0.69	0.74	56.0				
6	R2	105	0.0	0.132	13.3	LOS B	0.7	5.2	0.80	0.87	52.8				
Approa	ach	168	0.0	0.132	10.9	LOS B	0.7	5.2	0.76	0.82	53.6				
North:	John Oxl	ey Highway													
7	L2	292	0.0	0.162	3.3	LOS A	1.0	7.0	0.33	0.40	56.4				
8	T1	652	0.0	0.493	4.1	LOS A	3.7	26.1	0.57	0.42	57.0				
9a	R1	832	0.0	0.493	9.3	LOS A	3.7	26.1	0.53	0.64	53.8				
Approa	ach	1775	0.0	0.493	6.4	LOS A	3.7	26.1	0.51	0.52	55.4				
South	West: Joh	n Oxley High	way												
30a	L1	1231	0.0	0.430	3.5	LOS A	3.5	24.3	0.34	0.39	58.2				
32a	R1	26	0.0	0.204	10.9	LOS B	1.3	8.9	0.80	0.83	51.4				
32b	R3	146	0.0	0.204	13.6	LOS B	1.3	8.9	0.80	0.83	53.1				
Approa	ach	1403	0.0	0.430	4.7	LOS A	3.5	24.3	0.40	0.44	57.4				
All Vel	nicles	4433	0.2	0.782	8.2	LOS A	11.3	79.8	0.60	0.67	54.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:28 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2019 PM Base]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocutha	Jahr Or	veh/h	%	v/c	sec		veh	m		per veh	km/h				
South:	Jonn Ux	kely Ra (S)													
1b	L3	46	1.0	0.493	13.3	LOS B	3.6	25.3	0.88	1.00	49.6				
2	T1	697	1.0	0.648	13.8	LOS B	7.0	49.5	0.93	1.11	51.3				
3	R2	83	1.0	0.648	21.2	LOS C	7.0	49.5	0.96	1.17	51.5				
Approa	ach	826	1.0	0.648	14.5	LOS B	7.0	49.5	0.93	1.11	51.2				
East: V	Nrights F	۲d													
4	L2	68	0.0	0.236	8.1	LOS A	1.6	10.9	0.78	0.84	53.8				
4a	L1	114	0.0	0.236	8.2	LOS A	1.6	10.9	0.78	0.84	55.1				
6	R2	265	0.0	0.311	13.7	LOS B	1.8	12.6	0.82	0.91	52.8				
Approa	ach	447	0.0	0.311	11.4	LOS B	1.8	12.6	0.80	0.89	53.5				
North:	John Ox	ley Highway													
7	L2	129	0.0	0.069	3.1	LOS A	0.4	2.8	0.22	0.36	56.9				
8	T1	733	0.0	0.494	3.4	LOS A	3.7	25.8	0.42	0.35	57.9				
9a	R1	889	0.0	0.494	8.7	LOS A	3.7	25.8	0.38	0.58	54.5				
Approa	ach	1752	0.0	0.494	6.1	LOS A	3.7	25.8	0.39	0.47	56.0				
South\	Nest: Jol	hn Oxley High	way												
30a	L1	1508	0.0	0.598	4.3	LOS A	5.8	40.9	0.43	0.51	57.7				
32a	R1	3	0.0	0.076	10.3	LOS B	0.5	3.3	0.73	0.75	51.5				
32b	R3	79	0.0	0.076	12.9	LOS B	0.5	3.3	0.73	0.75	53.2				
Approa	ach	1591	0.0	0.598	4.7	LOSA	5.8	40.9	0.45	0.52	57.3				
All Ver	nicles	4616	0.2	0.648	7.6	LOS A	7.0	49.5	0.55	0.64	55.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:32 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2019 PM Project]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
South:	John Ov	ven/h	%	V/C	sec	_	ven	m	_	per ven	Km/h				
1b	13	46	10	0 501	13.7		37	25.0	0.88	1.01	40.4				
0		40	1.0	0.001	10.7		5.7	20.9	0.00	1.01	49.4				
2	11	697	1.0	0.658	14.3	LOSB	7.3	51.2	0.93	1.12	50.9				
3	R2	86	1.0	0.658	21.8	LOS C	7.3	51.2	0.96	1.18	51.1				
Approa	ach	829	1.0	0.658	15.0	LOS B	7.3	51.2	0.93	1.12	50.8				
East: V	Vrights R	۲d													
4	L2	72	0.0	0.247	8.2	LOS A	1.6	11.5	0.79	0.85	53.8				
4a	L1	119	0.0	0.247	8.2	LOS A	1.6	11.5	0.79	0.85	55.1				
6	R2	278	0.0	0.327	13.7	LOS B	1.9	13.3	0.82	0.92	52.7				
Approa	ach	468	0.0	0.327	11.5	LOS B	1.9	13.3	0.81	0.89	53.4				
North:	John Ox	ley Highway													
7	L2	135	0.0	0.072	3.1	LOS A	0.4	2.9	0.22	0.36	56.9				
8	T1	733	0.0	0.495	3.4	LOS A	3.7	26.0	0.43	0.35	57.9				
9a	R1	889	0.0	0.495	8.7	LOS A	3.7	26.0	0.39	0.58	54.5				
Approa	ach	1757	0.0	0.495	6.1	LOS A	3.7	26.0	0.39	0.47	56.0				
South\	Vest: Joł	nn Oxley High	way												
30a	L1	1508	0.0	0.605	4.4	LOS A	6.0	42.1	0.44	0.52	57.7				
32a	R1	3	0.0	0.076	10.3	LOS B	0.5	3.3	0.74	0.75	51.5				
32b	R3	79	0.0	0.076	13.0	LOS B	0.5	3.3	0.74	0.75	53.2				
Approa	ach	1591	0.0	0.605	4.8	LOS A	6.0	42.1	0.45	0.54	57.3				
All Veh	nicles	4645	0.2	0.658	7.8	LOS A	7.3	51.2	0.55	0.65	55.2				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:33 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2029 AM Base]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocution	laha Or	veh/h	%	V/C	sec		veh	m		per veh	km/h				
South:	John Ox	xely Ra (S)													
1b	L3	48	1.0	0.919	46.0	LOS D	17.4	122.6	1.00	1.67	34.8				
2	T1	1091	1.0	1.208	150.2	LOS F	112.6	794.7	1.00	3.58	18.1				
3	R2	178	1.0	1.208	223.5	LOS F	112.6	794.7	1.00	4.80	13.9				
Approa	ach	1317	1.0	1.208	156.2	LOS F	112.6	794.7	1.00	3.67	17.7				
East: V	Nrights F	٦d													
4	L2	45	0.0	0.094	9.7	LOS A	0.9	6.3	0.80	0.86	52.4				
4a	L1	28	0.0	0.094	10.4	LOS B	0.9	6.3	0.80	0.86	53.6				
6	R2	121	0.0	0.203	15.8	LOS B	1.3	9.2	0.92	0.95	51.5				
Approa	ach	195	0.0	0.203	13.6	LOS B	1.3	9.2	0.88	0.92	52.0				
North:	John Ox	dey Highway													
7	L2	339	0.0	0.188	3.3	LOS A	1.2	8.2	0.34	0.40	56.4				
8	T1	795	0.0	0.613	4.9	LOS A	5.4	37.6	0.67	0.52	56.4				
9a	R1	1014	0.0	0.613	9.6	LOS A	5.3	37.1	0.63	0.67	53.5				
Approa	ach	2147	0.0	0.613	6.9	LOS A	5.4	37.6	0.60	0.57	55.0				
South\	Nest: Jo	hn Oxley High	way												
30a	L1	1501	0.0	0.562	4.1	LOS A	5.3	37.3	0.37	0.48	58.1				
32a	R1	31	0.0	0.259	11.3	LOS B	1.7	11.8	0.85	0.85	51.2				
32b	R3	179	0.0	0.259	14.0	LOS B	1.7	11.8	0.85	0.85	53.0				
Approa	ach	1711	0.0	0.562	5.3	LOS A	5.3	37.3	0.43	0.53	57.2				
All Veh	nicles	5369	0.2	1.208	43.3	LOS D	112.6	794.7	0.65	1.33	36.4				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:29 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

V Site: 101 [2029 AM Project]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
Ocutha	Jahr O	veh/h	%	V/C	sec		veh	m		per veh	km/h				
South:	John O	xely Rd (S)													
1b	L3	48	1.0	0.929	48.9	LOS D	18.3	129.3	1.00	1.71	33.9				
2	T1	1091	1.0	1.220	157.6	LOS F	117.3	828.5	1.00	3.68	17.5				
3	R2	184	1.0	1.220	234.3	LOS F	117.3	828.5	1.00	4.93	13.3				
Approa	ach	1323	1.0	1.220	164.3	LOS F	117.3	828.5	1.00	3.78	17.1				
East: \	Nrights F	٦d													
4	L2	47	0.0	0.098	9.7	LOS A	0.9	6.6	0.80	0.86	52.4				
4a	L1	29	0.0	0.098	10.4	LOS B	0.9	6.6	0.80	0.86	53.6				
6	R2	127	0.0	0.214	15.9	LOS B	1.4	9.8	0.93	0.96	51.5				
Approa	ach	204	0.0	0.214	13.6	LOS B	1.4	9.8	0.88	0.92	52.0				
North:	John Ox	kley Highway													
7	L2	353	0.0	0.196	3.3	LOS A	1.2	8.6	0.34	0.41	56.4				
8	T1	795	0.0	0.615	5.0	LOS A	5.4	37.9	0.68	0.53	56.4				
9a	R1	1014	0.0	0.615	9.6	LOS A	5.3	37.2	0.63	0.67	53.5				
Approa	ach	2161	0.0	0.615	6.9	LOS A	5.4	37.9	0.60	0.58	54.9				
South\	Nest: Jo	hn Oxley High	way												
30a	L1	1501	0.0	0.563	4.1	LOS A	5.3	37.4	0.37	0.48	58.1				
32a	R1	32	0.0	0.261	11.4	LOS B	1.7	11.9	0.85	0.85	51.2				
32b	R3	179	0.0	0.261	14.0	LOS B	1.7	11.9	0.85	0.85	53.0				
Approa	ach	1712	0.0	0.563	5.3	LOS A	5.3	37.4	0.43	0.53	57.2				
All Veł	nicles	5400	0.2	1.220	45.2	LOS D	117.3	828.5	0.65	1.36	35.8				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:30 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2029 PM Base]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg Average Level of 95% Back of Queue Prop Effective Average														
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
South:	John Ox	ven/h	%	V/C	sec	_	ven	m	_	per ven	Km/h				
1b	12	56 F6	1.0	0.011	10.0		10.5	74.2	1 00	1 47	26.0				
a	Lo	00	1.0	0.011	42.3		10.5	74.3	1.00	1.47	30.0				
2	11	849	1.0	1.066	97.7	LOSF	54.9	387.3	1.00	2.58	24.1				
3	R2	101	1.0	1.066	134.5	LOS F	54.9	387.3	1.00	3.18	20.4				
Approa	ach	1006	1.0	1.066	98.3	LOS F	54.9	387.3	1.00	2.58	24.1				
East: V	Vrights F	Rd													
4	L2	83	0.0	0.378	13.0	LOS B	3.1	21.6	0.89	0.97	50.2				
4a	L1	139	0.0	0.378	13.1	LOS B	3.1	21.6	0.89	0.97	51.4				
6	R2	323	0.0	0.508	19.9	LOS B	4.0	28.1	0.96	1.09	48.9				
Approa	ach	545	0.0	0.508	17.1	LOS B	4.0	28.1	0.94	1.04	49.7				
North:	John Ox	ley Highway													
7	L2	158	0.0	0.084	3.1	LOS A	0.5	3.5	0.24	0.37	56.8				
8	T1	893	0.0	0.612	3.7	LOS A	5.3	36.9	0.53	0.38	57.3				
9a	R1	1084	0.0	0.612	9.0	LOS A	5.3	36.9	0.47	0.59	54.1				
Approa	ach	2135	0.0	0.612	6.3	LOS A	5.3	36.9	0.48	0.49	55.6				
South\	Nest: Joł	nn Oxley High	way												
30a	L1	1838	0.0	0.856	9.2	LOS A	15.0	105.0	0.48	0.79	54.8				
32a	R1	4	0.0	0.101	10.9	LOS B	0.7	5.0	0.84	0.78	51.1				
32b	R3	96	0.0	0.101	13.6	LOS B	0.7	5.0	0.84	0.78	52.8				
Approa	ach	1938	0.0	0.856	9.5	LOS A	15.0	105.0	0.50	0.79	54.2				
All Veh	nicles	5624	0.2	1.066	24.9	LOS C	54.9	387.3	0.62	1.02	44.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:34 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7

W Site: 101 [2029 PM Project]

Wrights Road / John Oxley Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>														
Mov	OD	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h				
South:	John Ox	ely Rd (S)													
1b	L3	56	1.0	0.827	45.7	LOS D	11.2	78.9	1.00	1.51	34.9				
2	T1	849	1.0	1.087	108.4	LOS F	60.6	427.5	1.00	2.73	22.6				
3	R2	105	1.0	1.087	149.2	LOS F	60.6	427.5	1.00	3.38	18.9				
Approa	ach	1011	1.0	1.087	109.2	LOS F	60.6	427.5	1.00	2.73	22.6				
East: \	Nrights R	d													
4	L2	86	0.0	0.393	13.3	LOS B	3.3	22.8	0.90	0.98	50.1				
4a	L1	144	0.0	0.393	13.4	LOS B	3.3	22.8	0.90	0.98	51.2				
6	R2	336	0.0	0.530	20.4	LOS C	4.3	30.0	0.97	1.11	48.6				
Approa	ach	566	0.0	0.530	17.6	LOS B	4.3	30.0	0.94	1.05	49.4				
North:	John Oxl	ey Highway													
7	L2	163	0.0	0.087	3.1	LOS A	0.5	3.6	0.24	0.37	56.8				
8	T1	893	0.0	0.613	3.7	LOS A	5.3	37.0	0.53	0.38	57.2				
9a	R1	1084	0.0	0.613	9.0	LOS A	5.3	37.0	0.48	0.60	54.1				
Approa	ach	2140	0.0	0.613	6.3	LOS A	5.3	37.0	0.48	0.49	55.6				
South	West: Joh	n Oxley High	way												
30a	L1	1838	0.0	0.857	9.3	LOS A	15.1	105.5	0.48	0.79	54.8				
32a	R1	4	0.0	0.101	10.9	LOS B	0.7	5.0	0.84	0.78	51.1				
32b	R3	96	0.0	0.101	13.6	LOS B	0.7	5.0	0.84	0.78	52.8				
Approa	ach	1938	0.0	0.857	9.5	LOS A	15.1	105.5	0.50	0.79	54.1				
All Vel	nicles	5655	0.2	1.087	26.9	LOS C	60.6	427.5	0.63	1.05	43.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTM CONSULTING PTY LTD | Processed: Thursday, 9 November 2017 10:27:35 AM Project: \\ttmsy1\Projects\Synergy\Projects\17SYT\17SYT0138 14 Highfields Circuit, Port Macquarie - Primary Health Care TIA\6 - Analysis Wright Rd _ John Oxley Highway.sip7